Wednesday, 24 August 2011

MQT of a free particle

Quantum Tunneling of the Magnetic Moment in a Free Particle.
M. F. O’Keeffe, E. M. Chudnovsky, and D. A. Garanin
ArXiv 1108.4189 (2011)

Quantum phase diagram for the ground-state magnetic moment and the total angular momentum.

MEMS control of magnetic anisotropy

Programming magnetic anisotropy in polymeric microactuators.
Jiyun Kim, Su Eun Chung, Sung-Eun Choi, Howon Lee, Junhoi Kim and Sunghoon Kwon
Nature Mater. 10, 747 (2011)
Schematic of the fabrication of polymeric magnetic microactuators.

Relaxation of Co3O4 NPs

Non-equilibrium effects in the magnetic behavior of Co3O4 nanoparticles.
Vijay Bisht, K.P. Rajeev
Solid State Comm. 151, 1275 (2011)
Aging experiments in the ZFC protocol at 20 K with waiting times 30, 300, and 3000 s. The inset shows the corresponding experiments in the FC protocol.

FeO NPs for MRI

Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents.
Byung Hyo Kim, Nohyun Lee, Hyoungsu Kim, Kwangjin An, Yong Il Park, Yoonseok Choi, Kwangsoo Shin, Youjin Lee, Soon Gu Kwon, Hyon Bin Na, Je-Geun Park, Tae-Young Ahn, Young-Woon Kim, Woo Kyung Moon, Seung Hong Choi, and Taeghwan Hyeon
JACS 133, 12624 (2011)

Acoustic breathing mode in Co NPs

Low Sensitivity of Acoustic Breathing Mode Frequency in Co Nanocrystals upon Change in Nanocrystallinity.
Dario Polli, Isabelle Lisiecki, Hervé Portalès, Giulio Cerullo, and Marie-Paule Pileni
ACS Nano 5, 5785 (2011)

Tuesday, 23 August 2011

Functional magnetic NP assemblies: Review

Functional Magnetic Nanoparticle Assemblies: Formation, Collective Behavior, and Future Directions.
S. A. Majetich, T. Wen, and R. A. Booth
ACS Nano 5, 6081(2011)

Self-assembly of ferritin NPS

Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism.
Mauri A. Kostiainen, Pierpaolo Ceci, Manuela Fornara, Panu Hiekkataipale, Oksana Kasyutich, Roeland J. M. Nolte, Jeroen J. L. M. Cornelissen, Ryan D. Desautels, and Johan van Lierop.
ACS Nano 5, 6394 (2011)
Strategy for the assembly and optically triggered disassembly of RMP dendron complexes and a schematic
representation of the surface/core-spin alignment in the presence of a magnetic field.

Measure of DW flexing

Measurements of Nanoscale DomainWall Flexing in a Ferromagnetic Thin Film.
A. L. Balk, M. E. Nowakowski, M. J. Wilson, D.W. Rench, P. Schiffer, D. D. Awschalom, and N. Samarth
Phys. Rev. Lett. 107, 077205 (2011)

(a) DW flex distance measured for different field duration t ¼ 1, 5, 10, and 15 seconds at T = 88 K in the 20 m device. Inset: Measured slopes plotted against t showing the onset of DW creep at t > 12 s. (b) Pinning site density measured at a constant t = 8 s for both devices. (c) Arrhenius plot of the pinning force, demonstrating the thermal deactivation energy for the pinning sites. (d) DW displacement for a field application of 1 Oe showing the time response of the measurement.

Chain cuprates and interchain coupling

Saturation Field of Frustrated Chain Cuprates: Broad Regions of Predominant Interchain Coupling.
S. Nishimoto, S.-L. Drechsler, R. O. Kuzian, J. van den Brink, J. Richter, W. E. A. Lorenz, Y. Skourski, Klingeler, and B. Büchner
Phys. Rev. Lett. 107, 097201 (2011)
Crystal structure of Li2CuO2 with two CuO2 chains per unit cell along the b axis. Right: View along the c axis on the ab plane. The main in- and interchain couplings J1;2 and JIC, J0 IC: arcs and dashed lines, respectively. The normalized ICs read beta_1= J_IC/J_1 and beta_2 =J_IC/J_1. 
Part of the 3D phase diagram around Li2CuO2 in terms of beta_2 and alpha. hs is given by contour lines.

Co islands by STM

Magnetic properties of monolayer Co islands on Ir(111) probed by spin-resolved scanning tunneling microscopy.
Jessica E. Bickel, Focko Meier, Jens Brede, André Kubetzka, Kirsten von Bergmann, and Roland Wiesendanger
Phys. Rev. B 84, 054454 (2011)
(a), (b), (e), (f) Spin-resolved dI/dU images. Note: (b) is a zoomed area from image (a) with opposite
tip magnetization direction. (c) Hysteresis curve taken from the area shown in (b).

Joule heating in nanowires

Joule heating in nanowires.
Hans Fangohr, Dmitri S. Chernyshenko, Matteo Franchin, Thomas Fischbacher, and Guido Meier
Phys. Rev. B 84, 054437 (2011)
Joule heating in a Permalloy nanowire with a notch on a silicon nitride membrane.

Radio-frequency current on spin-torque

Effects of radio-frequency current on critical fields for magnetization reversal in spin-torque devices.
W. Chen, S. H. Florez, J. A. Katine, M. J. Carey, L. Folks, and B. D. Terris
Phys. Rev. B 84, 054459 (2011)
(a), (b) Contour plots of dV/dI as a function of both the dc bias and the applied magnetic field, with the field-sweep directions from the AP to P state and from the P to AP state, respectively. (c) Schematic of the switching
boundaries, with the area of interest divided into several typical regimes.

Phase locking in nanooscillator

Phase locking of dynamical modes in a nanomagnetic oscillator with a circularly spin-polarized current.
Jui-Hang Chang, Hao-Hsuan Chen, and Ching-Ray Chang, Yaowen Liu
Phys. Rev. B 84, 054457 (2011)
(a) The coordinate system of the device. The direction of the effective field heff is along the ez axis. (b) A schematic configuration of a spin valve with circularly spin-polarized current.

Diamond-domain structures

Magnetization splitting in Landau and diamond-domain structures: Dependence on exchange interaction, anisotropy, and size.
Kaixuan Xie,1 Xiaopu Zhang,1 Weiwei Lin,2,* Peng Zhang,1 and Hai Sang
Phys. Rev. B 84, 054460 (2011)
(a) and (b) Two initial magnetization states for relaxing into the Landau domain structure (c) and
diamond-domain structure (d), respectively. (e) Dependence of total energy on the anisotropy constantK. (f) Dependence of total energy on the exchange coefficient A.

DWs in chain magnets

Static and dynamic properties of single-chain magnets with sharp and broad domain walls.
Orlando V. Billoni, Vivien Pianet, Danilo Pescia, and Alessandro Vindigni
Phys. Rev. B 84, 064415 (2011)
Domain-wall energy (in J units) as a function of the ratio D/J: discrete-lattice calculation (solid line), continuum-limit solution (dashed line). Crosses and circles correspond to the ratios used in transfer matrix and time-quantified Monte Carlo calculations, respectively.

Order in 2D molecular magnets

Magnetic order in quasi-two-dimensional molecular magnets investigated with muon-spin relaxation.
A. J. Steele, T. Lancaster, S. J. Blundell, P. J. Baker, F. L. Pratt, C. Baines, M. M. Conner, H. I. Southerland, J. L. Manson, and J. A. SchlueterPhys. Rev. B 84, 064412 (2011)
The structure of [Cu(HF2)(pyz)2]PF6, as an example of the [M(HF2)(pyz)2]X series.

Vortex superlattices

Spin-transfer torque and current-induced vortex superlattices in nanomagnets.
Oleksii M. Volkov, Volodymyr P. Kravchuk, Denis D. Sheka, and Yuri Gaididei
Phys. Rev. B 84, 052404 (2011)
Dependence of critical current J1 onthe nanodisk thickness for different disk diameters.

Friday, 12 August 2011

Classes of DW motion

Universality Classes of Magnetic DomainWall Motion.
Jae-Chul Lee,1,2 Kab-Jin Kim,1,* Jisu Ryu,3 Kyoung-Woong Moon,1 Sang-Jun Yun,1 Gi-Hong Gim, Kang-Soo Lee, Kyung-Ho Shin,2 Hyun-Woo Lee,3,† and Sug-Bong Choe
Phys. Rev. Lett. 107, 067201 (2011)
(a) The pure CIDWM V* vs J. Inset shows the motion of two DWs as a response to J. (b) V* vs ðH^1=4 for the DW motion driven by either pure H or J or both.

Gilbert damping from ab initio

Ab Initio Calculation of the Gilbert Damping Parameter via the Linear Response Formalism.
H. Ebert, S. Mankovsky, D. Ködderitzsch, P. J. Kelly
Phys. Rev. Lett. 107, 066603 (2011)
Gilbert damping parameter for bcc Fe1-xCox as a function of Co concentration.

Synthetic Antiferromagnet dynamics

Resonant Activation of a Synthetic Antiferromagnet.
S. S. Cherepov, B. C. Koop, Yu. I. Dzhezherya, D. C. Worledge, and V. Korenivski
Phys. Rev. Lett. 107, 077202 (2011)
(a) Schematic of the two AP states of a SAF particle (left and right panels) and the optical, out-of-phase
oscillation of the two moments under an off-axis microwave field (center panel). (b) Large-amplitude (dashed line) and small amplitude (solid line) optical-mode precession of the SAF antiferromagnetic vector.

Coupled DWs

Model of bound interface dynamics for coupled magnetic domain walls.
P. Politi, P. J. Metaxas, J.-P. Jamet, R. L. Stamps, and J. Ferré
Phys. Rev. B 84, 054431 (2011)
Experimentally obtained coupled wall velocity vC(H) (•) plotted with hard domain velocities in the presence of
a positively saturated soft layer v1(H + H1) (trian. up) and a negativelysaturated soft layer v1(H − H1) (trian. down).

Magnonic crystals by FMR

Magnetic hysteresis of dynamic response of one-dimensional magnonic crystals consisting of homogenous and alternating width nanowires observed with broadband ferromagnetic resonance.
J. Ding, M. Kostylev, and A. O. Adeyeye
Phys. Rev. B 84, 054425 (2011)
2D absorption spectra of homogenous width NW arrays. Wire width is 540 nm. Wire separations are
(a) s = 810 nm, (b) s = 120 nm, and (c) s = 80 nm. The MOKE results for s = 80 nm are shown in (d).

Short and long-range Ising models

Crossover between a short-range and a long-range Ising model.
Taro Nakada, Per Arne Rikvold, Takashi Mori, Masamichi Nishino, and Seiji Miyashita
Phys. Rev. B 84, 054433 (2011)
Estimates for Tc(α,L) for different values of α vs L −1. α = 0 (pure Ising), 0.0001, 0.001, 0.01, 0.1, 0.5, and 1 (Husimi-Temperley).

Magnetization dissipation

Magnetization dissipation in ferromagnets from scattering theory.
Arne Brataas, Yaroslav Tserkovnyak, Gerrit E. W. Bauer
Phys. Rev. B 84, 054416 (2011)
Schematic picture of a ferromagnet (F) in contact with a thermal bath (reservoirs) via metallic normal metal leads (N).

Spin spirals: magnetostatics

Magnetostatics and the rotational sense of cycloidal spin spirals.
N. Mikuszeit, S. Meckler, R. Wiesendanger, and R. Miranda
Phys. Rev. B 84, 054404 (2011)
Magnetization vector field of a sinusoidal
and cycloidal spin spiral. Contour lines give the constant magnetic
potential.
(a) Equipotential lines of the spin spiral. (b) Potential
due to the induced magnetization of the substrate.

Large anisotropy in Fe-Co/MgO

First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces.
H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, K. H. Shin
Phys. Rev. B 84, 054401 (2011)

Rectangular an rhombic dipolar lattices

Magnetization processes in rectangular versus rhombic planar superlattices of magnetic bars.
Y. G. Pogorelov, G. N. Kakazei, J. M. Teixeira, A. Hierro-Rodriguez, F. Valdés-Bango, M. Vélez, J. M. Alameda, J. I. Martín, J. Ventura, and J. B. Sousa
Phys. Rev. B 84, 052402 (2011)
Remagnetization processes at sweeping from positive to negative applied field for rec- (a)–(d) and rho- (e)–(h) superlattice geometries. Inverted areas in each case are outlined and shadowed.